BANGALORE, INDIA: Wind River announces a software virtualization platform enabling critical infrastructure companies to cost-effectively evolve aging legacy control systems not previously designed to support the connected nature of IoT. Wind River Titanium Control empowers the next generation of on-premise analytics to optimize industrial processes.
As traditional industrial control systems were not designed to support IoT, most are rigid, single purpose, and have a high cost to deploy, integrate, and maintain. Additionally, the obsolescence cycle is driving system updates that require new systems to keep pace with innovation while maintaining or lowering capital costs.
“With the emergence of Industrial IoT, companies are looking to deploy next-generation open and secure control systems; Titanium Control addresses this need, and is in active trials with customers in industries ranging from manufacturing to energy to healthcare,” said Jim Douglas, president of Wind River. “With the addition of Titanium Control to our product portfolio, Wind River is driving a new industrial era through virtualization, real-time performance and edge-to-cloud connectivity.”
Titanium Control is a commercially deployable on-premise cloud infrastructure that virtualizes traditional physical subsystems using a platform based on open standards.
It is part of the Wind River Titanium Cloud portfolio of virtualization products for the deployment of critical services from operations to data center environments that require real-time performance and continuous service availability. It is optimized for Intel Xeon processors, and is pre-validated on hardware from the leading providers of Intel-based servers.
It delivers the high performance, high availability, flexibility, and low latency needed to reduce capital and operating expenses, as well as minimize unscheduled downtime for industrial applications and control services at any scale. Unlike enterprise IT virtualization platforms, it provides high reliability for applications and services deployed at the network edge, for example in fog deployments.